
CS 61B B-Trees, LLRBs, Hashing
Fall 2024 Exam-Level 07: October 14, 2024

1 LLRB Insertions
Given the LLRB below, perform the following insertions and draw the final state of the LLRB. In addition,

for each insertion, write the balancing operations needed in the correct order (rotate right, rotate left, or

color flip). If no balancing operations are needed, write ”Nothing”. Assume that the link between 5 and 3

is red and all other links are black at the start.

5

3

1 4

9

(a) 1. Insert 7

2. Insert 6

3. Insert 2

4. Insert 8

5. Insert 8.5

6. Final state

(b) Convert the final LLRB to its corresponding 2-3 Tree.



2 B-Trees, LLRBs, Hashing

2 Hashing Gone Crazy
For this question, use the following TA class for reference.

public class TA {

int semester;

String name;

TA(String name, int semester) {

this.name = name;

this.semester = semester;

}

@Override

public boolean equals(Object o) {

TA other = (TA) o;

return other.name.charAt(0) == this.name.charAt(0);

}

@Override

public int hashCode() { return semester; }

}

Assume that the ECHashMap is a HashMap implemented with external chaining as depicted in lecture. The

ECHashMap instance begins with 4 buckets.

Resizing Behavior If an insertion causes the load factor to reach or exceed 1, we resize by doubling the

number of buckets. During resizing, we traverse the linked list that correspond to bucket 0 to rehash items

one by one, and then traverse bucket 1, bucket 2, and so on. Duplicates are not checked when rehashing

into new buckets.

Draw the contents of map after the executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA jasmine = new TA("Jasmine the GOAT", 10);

3 TA noah = new TA("Noah", 20);

4 map.put(jasmine, 1);

5 map.put(noah, 2);

6

7 noah.semester += 2;

8 map.put(noah, 3);

9

10 jasmine.name = "Nasmine";

11 map.put(noah, 4);

12

13 jasmine.semester += 2;

14 map.put(jasmine, 5);

15

16 jasmine.name = "Jasmine";

17 TA cheeseguy = new TA("Sam", 24);

18 map.put(cheeseguy, 6);



B-Trees, LLRBs, Hashing 3

3 Buggy Hash
The following classes may contain a bug in one of its methods. Identify those errors and briefly explain why

they are incorrect and in which situations would the bug cause problems.

(a) The Timezone class below:

1 class Timezone {

2 String timeZone; // "PST", "EST" etc.

3 boolean dayLight;

4 String location;

5 ...

6 public int currentTime() {

7 // return the current time in that time zone

8 }

9 public int hashCode() {

10 return currentTime();

11 }

12 public boolean equals(Object o) {

13 Timezone tz = (Timezone) o;

14 return tz.timeZone.equals(timeZone);

15 }

16 }

(b) The Course class below:

1 class Course {

2 int courseCode;

3 int yearOffered;

4 String[] staff;

5 ...

6 public int hashCode() {

7 return yearOffered + courseCode;

8 }

9 public boolean equals(Object o) {

10 Course c = (Course) o;

11 return c.courseCode == courseCode;

12 }

13 }


