
CS 61B More Sorting
Fall 2024 Exam-Level 12: November 18, 2024

1 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the best case and worst case

runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N
100 , we perform insertion sort on them.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N), Worst Case: Θ(N2)

Once we have 100 runs of size N/100, insertion sort will take best case Θ(N) and worst case Θ(N2)

time. Note that the number of merging operations is actually constant (in particular, it takes about 7

splits and merges to get to an array of size N/27 = N / 128).

(b) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

Doing an extra N work each iteration of quicksort doesn’t asymptotically change the best case runtime,

since we have to do N work to partition the array. However, it improves the worst case runtime, since

we avoid the ”bad” case where the pivot is on the extreme end(s) of the partition.

(c) We implement heapsort with a min-heap instead of a max-heap. You may modify heapsort but must

maintain constant space complexity.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N log(N)), Worst Case: Θ(N log(N))

While a max-heap is better, we can make do with a min-heap by placing the smallest element at the

right end of the list until the list is sorted in descending order. Once the list is in descending order,

it can be sorted in ascending order with a simple linear time pass.

(d) We use any algorithm to sort the array knowing that:

� There are at most N inversions.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

Recall that insertion sort takes Θ(N +K) time, where K is the number of inversions. Thus, the

optimal sorting algorithm would be insertion sort. If K < N, then, insertion sort has the best and

worst case runtime of Θ(N).

2 More Sorting

� There is exactly 1 inversion.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(1), Worst Case: Θ(N)

First, we notice that if there is only 1 inversion, it could only involve 2 adjacent elements. In-

tuitively, if two elements that are apart form an inversion, than some element between these two

would also form an inversion with one of the elements.

(Optional) A formal argument is as follows: suppose the only inversion involves 2 elements that are

not adjacent. Let’s call their indices i and j, where i < j, and a[i] > a[j] (definition of inversion).

Because they are not adjacent, there exist some index k, such that i < k < j. In case 1, assume

a[k] > a[i]. Then it follows that a[k] > a[i] > a[j]. Because k < j but a[k] > a[j], (k, j) forms an

inversion, so we have a contradiction (we assumed ony 1 inversion). In case 2, assume a[k] < a[i],

but then we have k > i, so (k, i) also form an inversion, which is also a contradiction.

Using this, we can just compare neighboring elements to find that exact inversion, and swap the 2

elements. If the inversion involves the first two elements, constant time is needed. If the inversion

involves elements at the end, N time is needed.

� There are exactly N(N−1)
2 inversions.

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

If a list has N(N−1)
2 inversions, it means it is sorted in descending order. This is because every

possible pair is an inversion (The total number of unordered pairs from N elements is
(
n2

)
, or

N(N−1)
2). So, it can be sorted in ascending order with a simple linear time pass. We know that

reversing any array is a linear time operation, so the optimal runtime of any sorting algorithm is

Θ(N).

More Sorting 3

2 LSD Radix Sort
In this question, we are trying to sort a list of strings consisting of only lowercase alphabets using LSD

radix sort. In order to perform LSD radix sort, we need to have a subroutine that sorts the strings based on

a specific character index. We will use counting sort as the subroutine for LSD radix sort.

(a) Implement the method stableSort below. This method takes in items and an index. It sorts the

strings in items by their character at the index index alphabetically. It is stable and should run in

O(N) time, where N is the number of strings in items.

/* Sorts the strings in `items` by their character at the `index` index alphabetically.

This should modify items instead of returning a copy of it. */

private static void stableSort(List<String> items, int index) {

Queue<String>[] buckets = new Queue[26];

for (int i = 0; i < 26; i++) { buckets[i] = new ArrayDeque<>(); }

for (String item : items) {

char c = ________________;

int idx = _____________________;

__;

}

int counter = 0;

for (_______________________________________) {

while (_______________________________________) {

items.set(counter, bucket.poll());

counter++;

}

}

}

Solution:

/* Sorts the strings in `items` by their character at the `index` index alphabetically. */

private static void stableSort(List<String> items, int index) {

Queue<String>[] buckets = new Queue[26];

for (int i = 0; i < 26; i++) {

buckets[i] = new ArrayDeque<>();

}

for (String item : items) {

char c = item.charAt(index);

int idx = c - 'a';

buckets[idx].add(item);

4 More Sorting

}

int counter = 0;

for (Queue<String> bucket : buckets) {

while (!bucket.isEmpty()) {

items.set(counter, bucket.poll());

counter++;

}

}

}

(b) Now, using the stableSort method, implement the method lsd below. This method takes in a List of

Strings and sorts them using LSD radix sort. It should run in O(N ·M) time, where N is the number

of strings in the list and M is the length of each string.

public static List<String> lsd(List<String> items) {

int length = items.get(0).length();

for (__) {

__;

}

return items;

}

Solution:

public static List<String> lsd(List<String> items) {

int length = items.get(0).length();

for (int i = length - 1; i >= 0; i--) {

stableSort(items, i);

}

return items;

}

More Sorting 5

3 MSD Radix Sort
Now, let’s solve the same problem as the previous part, but using a different algorithm. Recursively imple-

ment the method msd below, which runs MSD radix sort on a List of Strings and returns a sorted List

of Strings. For simplicity, assume that each string is of the same length, and all characters are lowercase

alphabets. You may not need all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort, but any stable sort works!

For the subroutine here, you may use the stableSort method from the previous question, which sorts the

given list of strings in place, comparing two strings by the given index. Finally, you may find following

methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this list between the specified

fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the specified collection to the

end of this list, in the order that they are returned by the specified collection’s iterator.

public static List<String> msd(List<String> items) {

return __;

}

private static List<String> msd(List<String> items, int index) {

if (___) {

return items;

}

List<String> answer = new ArrayList<>();

int start = 0;

___;

for (int end = 1; end <= items.size(); end += 1) {

if (___) {

___;

___;

___;

}

}

return answer;

}

/* Sorts the strings in `items` by their character at the `index` index alphabetically. */

private static void stableSort(List<String> items, int index) {

// Implementation not shown

}

6 More Sorting

Solution:

1 public static List<String> msd(List<String> items) {

2 return msd(items, 0);

3 }

4

5 private static List<String> msd(List<String> items, int index) {

6 if (items.size() <= 1 || index >= items.get(0).length()) {

7 return items;

8 }

9 List<String> answer = new ArrayList<>();

10 int start = 0;

11 stableSort(items, index);

12 for (int end = 1; end <= items.size(); end += 1) {

13 if (end == items.size() || items.get(start).charAt(index) != items.get(end).charAt(index)) {

14 List<String> subList = items.subList(start, end);

15 answer.addAll(msd(subList, index + 1));

16 start = end;

17 }

18 }

19 return answer;

20 }

21

22 /* Sorts the strings in `items` by their character at the `index` index alphabetically. */

23 private static void stableSort(List<String> items, int index) {

24 // Implementation not shown, you've done this in the previous problem!

25 }

