
CS 61B Inheritance
Fall 2024 Discussion 03: September 16, 2024

1 It’s a Bird! It’s a Plane! It’s a CatBus!
On a research expedition studying air traffic, we discovered a new species: the Flying Interfacing CatBus,

which acts like a vehicle and has the ability to honk (safety is important!).

(a) Given the Vehicle and Honker interfaces, fill out the CatBus class so that CatBuses can rev their engines

and honk at other CatBuses with a CatBus-specific honk.

interface Vehicle {

public void revEngine();

}

interface Honker {

public void honk();

}

public class CatBus ______________________ ________________, ________________ {

@Override

___________ __________ _______________ { /* CatBus revs engine, implementation hidden */ }

@Override

___________ __________ _______________ { /* CatBus honks, implementation hidden */ }

/** Allows CatBus to honk at other CatBuses. */

public void conversation(CatBus target) {

honk();

target.honk();

}

}

2 Inheritance

Solution:

1 interface Vehicle {

2 public void revEngine();

3 }

4

5 interface Honker {

6 public void honk();

7 }

8

9 public class CatBus implements Vehicle, Honker {

10 @Override

11 public void revEngine() {

12 // CatBus revs its engine, implementation not shown

13 }

14

15 @Override

16 public void honk() {

17 // CatBus honks, implementation not shown

18 }

19

20 /** Allows CatBus to honk at other CatBuses. */

21 public void conversation(CatBus target) {

22 honk();

23 target.honk();

24 }

25 }

(b) It’s a lovely morning in the skies and we’ve encountered a horrible Goose, which also implements Honker

(it has a knife in its beak!). Modify the conversation method signature so that CatBuses can honk at

both CatBus and Goose objects while only having one argument, target.

Solution:

We can change the method signature so that the type of the parameter target is Honker (both CatBus

and Goose implement Honker):

/** Allows CatBus to honk at other both CatBuses and Gooses. */

public void conversation(Honker target) {

honk();

target.honk();

}

Inheritance 3

(c) Assume that we have another class, CanadaGoose, which extends Goose. Which of the following lines

compile?

Solution:

Honker cb = new CatBus(); // Compiles - a CatBus is a kind of Honker

CatBus g = new Goose(); // Errors - a Goose is not a CatBus, even though they are both Honkers

// ("siblings" in the inheritance tree)

Honker h = new Honker(); // Errors - cannot instantiate an interface

CanadaGoose cg = new Goose(); // Errors - a CanadaGoose is a Goose,

// but not necessarily the other way around

Honker hcg = new CanadaGoose(); // Compiles - a CanadaGoose is a kind of Honker

4 Inheritance

2 Raining Cats and Dogs
(a) What would Java do after executing the main method in the TestAnimal class? Fill in the table provided

with the method saved at compile time, the method called at runtime, and overall output for lines 8-19

if applicable. If there is an error, write whether it is a runtime error or compile time error, and then

proceed through the rest of the code as if the erroneous line were not there.

public class Animal {

public String name, noise;

public Animal(String name) {

this.name = name;

this.noise = "Huh?";

}

public void greet(Animal a) { System.out.println("Hi " + a.name + ", I'm " + name); }

public void play() { System.out.println("I love to play! " + noise); }

public static void sleep() { System.out.println("Naptime!"); }

}

public class Cat extends Animal {

public Cat(String name) {

super(name);

this.noise = "Meow!";

}

public void greet(Animal a) { System.out.println("Cat " + name + " says: " + noise); }

public void play() {

System.out.println("Woo it is so much fun being a cat! " + noise);

}

}

public class Dog extends Animal {

public Dog(String name) {

super(name);

noise = "Woof!";

}

public void greet(Animal a) { System.out.println("Dog " + name + " says: " + noise); }

public void play() {

System.out.println("Woo it is so much fun being a dog! " + noise);

}

public static void sleep() { System.out.println("I love napping!"); }

}

Inheritance 5

1 public class TestAnimal {

2 public static void main(String[] args) {

3 Animal a = new Dog("Pluto");

4 Animal b = new Animal("Bear");

5 Cat c = new Cat("Garfield");

6 Dog d = new Dog("Lucky");

7

8 Cat e = new Animal("Kitty");

9 a.greet(c);

10 a.sleep();

11 c.play();

12 c.greet(d);

13 ((Animal) c).greet(d);

14 d.sleep();

15 a = c;

16 a.play(14);

17 ((Cat) b).play();

18 d = (Dog) a;

19 c = a;

20 }

21 }

6 Inheritance

Solution:

line Compile time (static) Runtime (dynamic) Output

8
Error: an Animal is not neces-

sarily a Cat
N/A Compiler error

9 Animal’s greet(Animal) Dog’s greet(Animal)
”Dog Pluto says:

Woof!”

10 Animal’s sleep() N/A - sleep() is static! ”Naptime!”

11 Cat’s play() Cat’s play()

”Woo it is so much

fun being a cat!

Meow!”

12 Cat’s greet(Animal) Cat’s greet(Animal)
”Cat Garfield says:

Meow!”

13 Animal’s greet(Animal) Cat’s greet(Animal)
”Cat Garfield says:

Meow!”

14 Dog’s sleep() N/A - sleep() is static! ”I love napping!”

15
works because a Cat is-an Ani-

mal

works because a Cat is-an Ani-

mal

ok - nothing is

printed

16
Error: Animal does not define

play(int)
N/A Compiler error

17
Animal’s play() (cast works here

because Animal could be a Cat)

Error: an Animal is not neces-

sarily a Cat
Runtime error

18
Works because Animal could be

a Dog

Error: a Cat is not a Dog (can’t

cast between siblings)
Runtime error

19
Error: c is static type Cat but a

is static type Animal
N/A Compiler error

(b) Spoiler alert! There is an error on the last line, line 19. How could we fix this error?

Solution:

The compilation error on line 19 is because we are trying set c, which is of static type Cat to be equal

to a, when the static type of a is Animal. Even though at runtime, a really does have dynamic type

Cat, the compiler only sees static types so it doesn’t believe that this assignment is valid. The compiler

only sees that we are trying to set a Cat variable to point to an Animal, and an Animal isn’t a Cat!

We could fix this error by casting a to be a Cat, such that the line reads c = (Cat) a;. This would be

a valid cast, as the compiler agrees that a variable of static type Animal could potentially hold a Cat,

and so our request is feasible. Because the cast works, then the assignment is also now valid because

a variable of static type Cat can be told to point to the same thing as another variable of (temporary)

static type Cat. At runtime, this line will be fine because we were telling the truth: a really is a Cat

dynamically!

	It's a Bird! It's a Plane! It's a CatBus!
	Raining Cats and Dogs

