
CS 61B Asymptotics, Disjoint Sets
Fall 2024 Discussion 05: September 30, 2024

1 Asymptotics
(a) Say we have a function findMax that iterates through an unsorted int array one time and returns the

maximum element found in that array. Give the tightest lower and upper bounds (Ω(·) and O(·)) of

findMax in terms of N, the length of the array. Is it possible to define a Θ(·) bound for findMax?

(b) Give the worst case and best case runtime in terms of M and N . Assume ping is in Θ(1) and returns

an int.

1 for (int i = N; i > 0; i--) {

2 for (int j = 0; j <= M; j++) {

3 if (ping(i, j) > 64) { break; }

4 }

5 }



2 Asymptotics, Disjoint Sets

(c) Below we have a function that returns true if every int has a duplicate in the array, and false if there

is any unique int in the array. Assume sort(array) is in Θ(N logN) and returns array sorted.

1 public static boolean noUniques(int[] array) {

2 array = sort(array);

3 int N = array.length;

4 for (int i = 0; i < N; i += 1) {

5 boolean hasDuplicate = false;

6 for (int j = 0; j < N; j += 1) {

7 if (i != j && array[i] == array[j]) {

8 hasDuplicate = true;

9 }

10 }

11 if (!hasDuplicate) return false;

12 }

13 return true;

14 }

Give the worst case and best case runtime where N = array.length.



Asymptotics, Disjoint Sets 3

2 Disjoint Sets, a.k.a. Union Find
In lecture, we discussed the Disjoint Sets ADT. Some authors call this the Union Find ADT. Today, we will

use union find terminology so that you have seen both.

(a) Assume we have nine items, represented by integers 0 through 8. All items are initially unconnected

to each other. Draw the union find tree, draw its array representation after the series of connect()

and find() operations, and write down the result of find() operations using WeightedQuickUnion

without path compression. Break ties by choosing the smaller integer to be the root.

Note: find(x) returns the root of the tree for item x.

connect(2, 3);

connect(1, 2);

connect(5, 7);

connect(8, 4);

connect(7, 2);

find(3);

connect(0, 6);

connect(6, 4);

connect(6, 3);

find(8);

find(6);



4 Asymptotics, Disjoint Sets

Below is an implementation of the find function for a Disjoint Set. Given an integer val, find(val)

returns the root value of the set val is in. The helper method parent(int val) returns the direct parent

of val in the Disjoint Set representation. Assume that this implementation only uses QuickUnion.

1 public int find(int val) {

2 int p = parent(val);

3 if (p == -1) {

4 return val;

5 } else {

6 int root = find(p);

7 return root;

8 }

9 }

(b) If N is the number of nodes in the set, what is the runtime of find in the worst case? Draw out the

structure of the Disjoint Set representation for this worst case.

(c) Using a function setParent(int val, int newParent), which updates the value of val’s parent to

newParent, modify find to achieve a faster runtime using path compression. You may add at most one

line to the provided implementation.

(d) Extra Practice: Draw out the tree and array representation for the following WeightedQuickUnion with

path compression that has 9 elements from 0 to 8. Break ties by choosing the smaller integer to be root.

connect(2, 3);

connect(1, 2);

connect(5, 7);

connect(8, 4);

connect(7, 2);

find(3);

connect(0, 6);

connect(7, 4);

connect(6, 3);

find(8);

find(6);


	Asymptotics
	Disjoint Sets, a.k.a. Union Find

