
CS 61B Sorting
Fall 2024 Discussion 11: November 12, 2024

1 All Sorts Of Sorts
Show the steps taken by each sort on the following unordered list:

0, 4, 2, 7, 6, 1, 3, 5

(a) Insertion sort

(b) Selection sort

(c) Merge sort

(d) Use heapsort to sort the following array (hint: draw out the heap). Draw out the array at each step:

0, 6, 2, 7, 4



2 Sorting

2 Crystal Has Been Waiting For This
Claire and Ada, two alumni 61B TAs, are trying to sort the TAs by height so they can snap a photo. Can

you help them out?

public class TA {

private String name;

private int height;

public TA(String name, int height) {

this.name = name;

this.height = height;

}

}

(a) Implement a TAComparator below such that it compares two TAs’ height. Recall that a Comparator’s

compare method returns a negative number when o1 is ”less than” o2, positive number when o1 is

”greater than” o2, and 0 when they are the same.

(b) Anniyat suggests that we use Quicksort with our comparator. Given the following list of TAs, who

would make the worst pivot? What about the best pivot?

TA ethan = new TA("Ethan", 6);

TA ronnie = new TA("Ronnie", 9001);

TA aditya = new TA("Aditya", 1);

TA elana = new TA("Elana", 5);

TA sree = new TA("Sree", 7);

TA kevin = new TA("Kevin", 25);

TA elaine = new TA("Elaine", 9);

TA daniel = new TA("Daniel", 4);

TA teresa = new TA("Teresa", 8);

TA diego = new TA("Diego", 8);

(c) Diego points out that even though he got in line after Teresa, he ended up in front of Teresa in the

sorted list produced by Quicksort (which he doesn’t like because that makes it seem like he’s shorter

than Teresa)! How might we ensure that Diego ends up behind Teresa?

(d) Our TAs have just been sorted by height, but suddenly Vika and Wilson come running in late! Which

sort will do the most minimal work to get them in their correct spots, and what is the additional runtime

it will take (ie. not including the runtime for sorting all the other TAs first)?



Sorting 3

3 Zero One Two-Step
(a) Given an array that only contains 0’s, 1’s and 2’s, write an algorithm to sort it in linear time without

creating a new array. You may want to use the provided helper method, swap.

Hint: Consider how Hoare partitioning rearranges elements in an array.

public static void specialSort(int[] arr) {

int front = 0;

int back = arr.length - 1;

int curr = 0;

while (______________________________) {

if (arr[curr] < 1) {

_____________________________;

_____________________________;

_____________________________;

} else if (arr[curr] > 1) {

_____________________________;

_____________________________;

} else {

_____________________________;

}

}

}

private static void swap(int[] arr, int i, int j) {

int temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

(b) We just wrote a linear time sort, how cool! Why can’t we always use this sort, even though it has better

runtime than Mergesort or Quicksort?

(c) The sort we wrote above is also ”in place”. What does it mean to sort ”in place”, and why would we

want this?


	All Sorts Of Sorts
	Crystal Has Been Waiting For This
	Zero One Two-Step

